Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu, ${ }^{\text {a, } \mathbf{b}_{*}}$
Zhong-Lu You, ${ }^{\text {a,b }}$ Yang Qu, ${ }^{\text {a,b }}$
Wei-Sheng Liu, ${ }^{\text {a,b }}$ Min-Yu Tan ${ }^{\text {a,b }}$ and Ji-Long Ma ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Ni}-\mathrm{O})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.089$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquanickel(II) dichloride bis(hexamethylenetetramine) tetrahydrate

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Ni}^{\mathrm{II}}$ atom lies on a center of inversion, and is coordinated by six O atoms from six water molecules, in a slightly distorted octahedral geometry. In the crystal structure, O, N and Cl atoms act as acceptors (A) to form intermolecular $\mathrm{O}-\mathrm{H} \cdots A$ hydrogen bonds, giving a three-dimensional network.

Comment

The structure of the title complex, (I), is similar to that of hexaaquanickel(II) dinitrate bis(hexamethylenetetramine) tetrahydrate (Hu et al., 2002). In (I), the formula unit consists of a hexaaquanickel(II) cation, two chloride anions two hexamethylenetetramine molecules and four uncoordinated water molecules (Fig. 1). The range of $\mathrm{Ni}-\mathrm{O}$ bond lengths in (I) $[2.0227(18)-2.0554(18) \AA]$ is similar to the range [2.022 (2)-2.063 (2) Å] in the dinitrate analog (Hu et al., 2002) and is normal for $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complexes. The $\mathrm{Ni}^{\mathrm{II}}$ atom lies on a center of inversion and is coordinated by six O atoms from six water molecules. The cis angles around the $\mathrm{Ni}^{\mathrm{II}}$ atom deviate slightly from the ideal angle of 90° [86.61 (8)$93.39(8)^{\circ}$]; thus the $\mathrm{Ni}^{\mathrm{II}}$ coordination center has slightly disorted octahedral geometry.

$4 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{Cl}^{(-)}$
(I)

The crystal structure contains intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 2 and Table 2) which connect cations, anions and solvent water molecules into a three-dimensional structure.

Experimental

All reagents and solvents were used as obtained without further purification. $\mathrm{NiCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 202 \mathrm{mg})$ and hexamethylenetetramine ($2 \mathrm{mmol}, 280 \mathrm{mg}$) were dissolved in ammonia (20 ml). The mixture was stirred for ca 5 min to obtain a clear blue solution. After keeping the solution in air for two weeks with ammonia gas escaping, large blue crystals were formed. The product was isolated, washed three times with water, and dried in a vacuum desiccator using CaCl_{2} (yield: 54\%).

Received 1 September 2003
Accepted 12 September 2003 Online 18 September 2003

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=590.14$
Triclinic, $P \overline{1}$
$a=9.330$ (6) \AA
$b=9.411$ (6) \AA
$c=9.446(6) \AA$
$\alpha=119.551(7)^{\circ}$
$\beta=94.192$ (8) ${ }^{\circ}$
$\gamma=100.990(8)^{\circ}$
$V=694.6(8) \AA^{3}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.670, T_{\text {max }}=0.848$
3644 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.089$
$S=1.05$
2418 reflections
204 parameters
H atoms treated by a mixture of independent and constrained refinement

$Z=1$

$D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2777
reflections
$\theta=2.5-26.3^{\circ}$
$\mu=0.95 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.46 \times 0.32 \times 0.18 \mathrm{~mm}$

2418 independent reflections
2216 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 11$
$k=-10 \rightarrow 11$
$l=-11 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0606 P)^{2}\right. \\
& \quad \quad+0.0662 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \quad \text { (Sheldrick, 1997a) }
\end{aligned}
$$

Extinction coefficient: 0.059 (5)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

Ni1-O3	$2.0227(18)$	Ni1-O2	$2.0554(18)$
Ni1-O1	$2.0460(17)$		
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 1$	$87.39(9)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$86.66(8)$
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$92.61(9)$	$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O}^{\mathrm{i}}$	$89.24(9)$
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 2$	$90.76(9)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}}$	$93.34(8)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\text {ii }}$	0.77 (3)	2.06 (3)	2.823 (3)	172 (3)
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{O} 4$	0.85 (3)	1.90 (3)	2.739 (3)	166 (3)
$\mathrm{O} 2-\mathrm{H} 3 \cdots \mathrm{~N} 2$	0.76 (4)	2.08 (4)	2.814 (3)	164 (3)
$\mathrm{O} 2-\mathrm{H} 4 \cdots \mathrm{Cl} 1$	0.84 (4)	2.39 (4)	3.191 (2)	158 (3)
$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{~N} 4^{\text {iii }}$	0.85 (3)	1.98 (3)	2.799 (3)	161 (3)
$\mathrm{O} 3-\mathrm{H} 6 \cdots \mathrm{O}$	0.71 (3)	2.00 (3)	2.714 (3)	172 (3)
$\mathrm{O} 4-\mathrm{H} 7 \cdots \mathrm{Cl} 1^{\text {iv }}$	0.88 (5)	2.37 (5)	3.253 (3)	176 (4)
$\mathrm{O} 4-\mathrm{H} 8 \cdots \mathrm{Cl} 1^{v}$	0.77 (5)	2.44 (5)	3.210 (3)	173 (4)
$\mathrm{O} 5-\mathrm{H} 9 \cdots \mathrm{~N} 3^{\text {vi }}$	0.79 (3)	2.05 (3)	2.838 (3)	170 (3)
$\mathrm{O} 5-\mathrm{H} 10 \cdots \mathrm{Cl} 1^{\text {vii }}$	0.82 (4)	2.35 (4)	3.168 (3)	174 (3)

Symmetry codes: (ii) $1-x, 2-y, 1-z$; (iii) $x, y, 1+z$; (iv) $1-x, 1-y,-z$; (v) $x-1, y, z$; (vi) $2-x, 2-y, 1-z$; (viii) $x, 1+y, 1+z$.

H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$, and included in the refinement in riding-model approximation with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the carrier atom. H atoms bonded to O atoms were refined independently with isotropic displacement parameters.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to

View of the centrosymmetric formula unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabeled atoms are related to the corresponding labeled atoms by the symmetry code $1-x, 1-y, 1-z$.

Figure 2
View along the a axis of the three-dimensional structure in (I), with the hydrogen bonds shown as dashed lines.
solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002, and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Hu, M.-L., Ye, M.-D. \& Ng, S. W. (2002). Acta Cryst. E58, m486-m487. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

